5. Analýza vybraných limitujících faktorů

5.1. Vliv imisí na lesní porosty

Jiří Flousek

Správa KRNAP, Dobrovského 3, CZ-543 11 Vrchlabí, e-mail: jflousek@krnap.cz

Úvod

Velkoplošné odumírání lesních porostů, související s vlivem průmyslových imisí, je dálším faktorem výrazně ovlivňuje vývoj rostlin a početnost především lesních druhů ptáků v České republice. Viditelné příznaky poškození lesů byly zaznamenány již počátkem 50. let v tzv. Černém trojúhelníku, v pohraničních pohořích jihovýchodního Německa, jihozápadního Polska a České republiky (nejprve Krušné hory, později Jizerské hory, Krkonoše a Orlické hory), kde bylo postupně zasaženo plných 100 % lesních porostů. V následujících letech se však symptomy poškození objevily i v dalších horských oblastech střední Evropy (např. KANDLER & INNES 1995).

Jaká je příčina a mechanismy působení průmyslových emisí? Jejich hlavním zdrojem je spalování fosilních paliv a komplex průmyslových technologií. Do ovzduší se tak v plynné i pevné formě uvolňují oxidy síry, dusíku a uhliku, uhlovodíky, těžké kovy a další látky. K poškozování dřevin dochází syntickým působením plynných složek a pražných částic přímo na jehličí (listy) a/nebo prostřednictvím "kyselých dešťů", které ovlivňují přímo nadzemní části stromů a nepřímo kvalitu půdy (vě. změn ve společenstvích půdních organismů, poškození mykorhizních hub, narušení kořenového systému a nutičního režimu dřeviny aj.).

Zmenšují se roční přírůstky dřeva, ubývá celková plocha olistění, snižuje se odolnost dřeviny ke klimatickým faktorům i k přirozeným živočišným škůdcům a houbovým onemocněním. Výsledkem takové řetězové reakce je prosvědčování koruny stromu a jeho usychání. Popsaný děj probíhá souběžně u většiny stromů zasaženého lesa a porosty se tak rozpadají na velkých plochách. Nejprve odumírají porostní stěny na návětřní straně, imise rychlejší pronikají zničenou porostní stěnou do centra porostů, rozpad oslabeného lesa je urychlen přemnožováním hmyzích škůdců, polomy a vývrtů. Nejvíce jsou zasaženy jehličnaté porosty (především dřevěné smrkové monokultury), situace je výrazně lepší ve smíšených a listnatých lesích. Poškozování a odumírání stromů postupuje rychleji u nepůvodních dřevin ve srovnání s porosty autochtonního původu.

Se stoupajícím imisním poškozením porostů klesá reprodukční schopnost dřevin, takže téměř nedochází k jejich přirozenému zmlazování. Postupné prosvědčování porostu, okyselování a často i podmáčení lesní půdy podmíněje změny v rostlinných společenstvích bylinného patra. Původní lesní společenstva jsou nahrazována společenstviny světlo-, kyselo- a vlhkomilných druhů volných prostranství (často téměř monokulturní porosty titin Calamagrostis spp.).

V České republice je popsány průběh poškozování a odumírání lesů aktuálně především v horských oblastech, v polohách zhruba nad 900 m n.m. Převážně smrkové lesy tu rostou při výškové hranici svého rozsíření, v prostředí s omezeným přísunem živin a vody, v dřavných klimatických podmínkách se zvýšenou frekvencí a
Obr. 1. Vývoj zdravotního stavu jehličnatých (sonvistá číra) a listnatých porostů (přerušovaná číra) v České republice v letech 1986-99 (% šedesátiiletých a starších porostů s 26-100 % poškozených stromů - MZe 2000).

množstvím srážek a s existencí mrznoucích horizontálních srážek. Pro citlivé lesní porosty horských oblastí je navíc velmi významné epizodické zasažení průmyslovými emisemi, i když celoroční depozice škodlivin se nemusí významně lišit od průměru (podrobněji viz FLOUSEK & HUDEC 1991, FLOUSEK et al. 1993).

Historie sledování

Převažující část prací, studujících reakce hnízdních společenstev ptáků a populací jednotlivých druhů na měnící se strukturu imisemi zasažených ekosystémů, pochází ze střední Evropy, především z území Německa (např.

Vliv na ptáky

Poškozování lesních porostů na rozsáhlých plochách, jejich následné odumírání a vznik imisních holin významné ovlivňuje především hnízdící a přežívající, méně již migrující druhy ptáků. Zásadním způsobem se mění podmínky pro hnízdění, ziskávání potravy, možnosti ochrany před predátory i nepříznivým počasím.

S postupnou redukcí olistění, s prosvětlováním stromů a celkovou likvidací korunového patra stromů mízí pestrá nabídka hnízdících možností, která posíhá druhy stavějící si hnízda v koncových větvích (např. králečí Regulus spp.), na větvích u kmene stromů (např. drozdí Turdus spp.) nebo v rozsochách silnějších větví (dravci Accipitridae), i druhy hnízdící nebo nocující v dutinách (např. sovy Strigiformes, šplhavci Piciformes nebo sykory Parus spp.). Mízící stromové patro zhoršuje mikroklimatické podmínky, vystavuje otevřená hnízda lesních druhů přímému působení klimatických faktorů a zvyšenému riziku predace a likviduje vhodné prostředí pro úkryt a ochranu nocujících ptáků.

Naopak rychlý rozvoj bylinného patra otevírá vhodné příležitosti pro hnízdění ptáků otevřených ploch (především skřívanec Alauda arvensis, lindušky Anthus spp., bramborneček hnedý Saxicola rubetra, cvrčílka zelená Locustella naevia); hnízdí možnosti nabízejí i nezlikvidované haly větví z odtěžených porostů (např. převouška modrá Prunella modularis, smrad obecný Emberiza citrinella). Rozpadající se porosty a vzniklé holiny vytvářejí podmínky pro pronikání některých druhů z poloh nad horní hranici lesa do montánního stupně (např. linduška horská Anthus spinolleta, čečetka zimní Carduelis flammea).

Snížená reprodukční schopnost dřevin a tedy i nabídka jejich semen redukuje potravní zdroje semenožravých ptáků (např. křivka obecná Loxia curvirostra, čílek lesní Carduelis spinus). Průběžná redukce jejich a rozpad korunového patra významně snižuje početnost a diverzitu bezobratlých i likviduje tak potravní základnu hnízdících i zimujících hmyzožravých druhů (např. MÖCKEL 1992 považuje zimní početnost ptáků za nejdůležitější indikátor stavu lesních porostů). Poškození a odumírání porostů brusnice borůvky Vaccinium myrtillus pod vlivem kyselých srážek (zhoršení potravní nabídky a úkrytových možností pro mláďata) je považováno za jeden z faktorů odpovědných za úbytek tělese hlušce Tetrao urogallus ve střední Evropě.

Změny v chemismu půdy, podmíněné působením kyselých srážek, redukují početnost půdních organismů (např. žízaly Lumbricidae, mnohonožky Chilopoda) a ovlivňují tak populace na tuto potravu vázaných ptáků (např. drozdí Turdus spp.).

Na druhé straně potravní nabídka zlepšuje vysokou početnost dřevokazného hmyzu v lehce až středně poškozených porostech (např. strakopudi Dendrocopos spp., datlík tříprstý Picoides tridactylus) nebo hladavců na imisních holinách (především hraboš mokřadní Microtus...
agrestis jako významná složka potravy sýce rousného Aegolius funereus). Přechodné zvýšení početnosti dalších skupin hmyzu v oslabených porostech (např. může Aphidoidea, ploskohřebetka smrková Cephalca abietis, obalec modřinnový Zeiraphera dinitana) se projevuje v pozitivní reakci některých hmyzožravých druhů (např. sýkory Parus spp.), rychlé zarážení imisních holin pionýrskými dřevinami zlepšuje potravní podmínky pro tetřívek obecného Tetrao tetrix.

Reakce jednotlivých druhů a společenstev ptáků

Dosavadní výsledky z území České republiky prokazují významnou negativní závislosti mezi stupněm poškození lesních porostů a počtem hnízdících druhů, jejich celkovou početností a druhovou diverzitou. Uvedené charakteristiky postupně klesají od relativně zdravých nebo jen lehce poškozených porostů až po středně poškozené, až k mrtvým lesům a imisním holinám; začínají se zvyšovat až na holinách s mladšími výsadbami. Čím pokročilejší je stupeň poškození lesa, tím odlišnější je nově přistávající společenstvo od původního, typicky lesního. Společenstva na obou extrémech této "sukcesní" řady - ve zdravém a zapojeném smrkovém lesu a na holině - se během jejího odumírání, se již téměř nepoddají.

Konkrétní představa o rozsahu změn nám může poskytnout hodnocení vlivu velkoplošného odumírání lesů v Krkonosech a Jizerských horách (asi 850 km²) na početnost ptáků v období 1960-90. Přestože ustupující lesní druhy byly nahrazovány druhy nelesních biotopů, pohyboval se odhadovaný pokles celkové početnosti hnízdících ptáků kolem 15 %, tj. asi 50 000 pářů (FOLUSEK et al. 1993).

Vztahy mezi stupněm poškození lesa a početností jednotlivých hnízdících druhů se liší podle jejich ekologických nároků. Souhrnně lze říci, že lesní druhy ptáků jsou postupně nahrazovány druhy preferujícími otevřená prostranství.

Početnost řady lesních druhů plynule klesá s rostoucím poškozením porostu. Patří k nim především šplhavci Piciformes, kos černý Turdus merula, drozd zpěvný T. philomelos, králiček obecný Regulus ignicapillus nebo hýl obecný Pyrrhua pyrrhula.

U dalších lesních druhů ptáků se početnost výrazně nemění v relativně zdravých, lehce a středně poškozených porostech a prudce klesá až v lesích s více než 50 % odumírajících stromů (např. holub hřiveček Columba palumbus, střížlík obecný Trogloctyes tralgolobyes, červenka obecná Eriithacus rubecula, králiček obecný Regulus regulus, lejsek černohlavý Ficedula hypoleuca, sýkora parukátková Parus cristatus, sýkora ubelníček P. ater, šoupálek dlouhokrčný Certhia familiaris, pěnkavka obecná Fringilla coelebs, křivka obecná Loxia curvirostra). Početnost některých z nich (především králička obecného a sýkor) může dokonce ve středně poškozených lesích kulminovat v souvislosti s početným výskytem některých skupin hmyzu a tedy zvýšenou nabídkou potravy.

Pouze několik málo druhů dosahuje své nejvyšší "lesní" početnosti až v těžce zasažených porostech (např. rehek domácí Phoenicus ochreros a rehek zahradní P. phoenicurus).

Se stupněm poškození, souběžným prosvětlováním porostu a rozvojem bohatého bylinného patra na imisních holinách naopak stoupá početnost druhů otevřených ploch (např. tetřívek obecný Tetrao tetrix, skřívan polní Alauda arvensis, linduška lesní Anthus trivialis, břamboreček hnízdí Saxicola rubetra, pěnice hnízdíkřídlá Sylvia communis nebo cvrčká zelená Locustella naevia). Početnost některých druhů se dokonce blíží hodnotám v jejich původní optimálních biotopech nad horní hranici lesa (např. linduška lucní Anthus pratensis).

V souvislosti s postupující sukcesí na imisních holinách s mladými
výsadbami stoupá početnost druhů keřového pata - především pévůska modrá *Prunella modularis*, pěnice černohlavá *Sylvia atricapilla*, budníček menší *Phylloscopus collybita*, budníček větší *P. trochilus*, konopka obecná *Carduelis cannabina*, čečka žímna *C. flammia* nebo strnad obecný *Emberiza citrinella*. V lesních porostech však byl u pěnice černohlavé a obou zmíněných druhů budníčků rovněž zaznamenán pokles početnosti s rostoucím poškozením lesa.

Některé druhy na stupeň poškození výraznější nereagují (nebo dosud nebyla jejich reakce zjištěna) a jejich útost je spojen až s absolutní likvidací lesa (např. drozd brávník *Turdus viscivorus*).

Reakce jednotlivých druhů se však mohou v různých geografických oblastech lišit (mezi Krušnými horami a Krkonošemi zjištěny rozdíly např. u štířilíka obecného, červenky obecné nebo pěnkavy obecné - cf. FLOSEK 1994, ŠTASTNÝ & BEJČEK 1999).

Doporučení k nápravě

Možnosti obnovy poškozených a odumírajících lesních porostů je nutné založit na dvou základních přístupech (logickou prioritou a nezbytným východím předpokladem samozřejmě zůstává postupná redukce zdrojů průmyslových emisí):
- zabezpečit ochranu zbývajících původních populací a místních ekotopů dřevin a využívat je jako zdroj geneticky vhodného sadeního materiálu při rekonstrukci lesních porostů,
- postupnou rekonstrukci nahradit nepůvodní, často monokulturní a stejnověké lesy věkově rozdílnějšími porosty s druhojížm složením dřevin, které se blíží původnímu stavu a odpovídají ekologickým podmínkám stanoviště.

Rekonstrukce lesů je však negativně ovlivňována dalšími abiotickými a biotickými faktory. Povrchová i introsekce eroze půdy znesnadňuje stabilizaci lesů na suťových svazích a musí se řešit náročněji protierozními opatřeními, v extrémních případech i donašením substrátu pro výsadbu stromků (např. KRIGGEL 1999). Nezanedbatelné je rovněž poškozování výsadbe živočichy. Okus a loupání dřevin zvíří lze snižovat mechanickou achemickou ochranou výsadub (důležitou, často neplněnou podmínkou je snižování vysokých stavů především jeření zvěře, neodpovídajících ekologické únosnosti příslušného území), poškozování výsadeb drobnými savci (především hrabost, mokřadní *Microtus agrestis* na imisních holinách) však dosud nebylo uspokojivě vyřešeno (maloplošné používání rodenticid neni v komplikovaných terénech horských oblastí účinné a na řadě lokalit ani přijatelné).

Z výše uvedených příkladů je zřejmé, že rekonstrukce imisemi poškozených lesních porostů je časově dlouhodobá záležitost, která bude ovlivňovat hnífndí společenstva ptáků v nejvíce
postižených oblastech České republiky ještě desítky (či stoveky) let po redukcii příp. eliminaci zdrojů znečištění ovzdusí. Obecně proto platí, že pro udržení co nejvyšších diverzity ptácích společenstev je nezbytné zachovat co nejvyšší zastoupení krajinnových struktur (vč. částí odumřelých porostů) v obnovovaném území.

Literatura

Aktuální problémy ochrany ptáků v ČR

PORKERT J. 1982: Ke strukturalním změnám biotopů tečkovičatých (Tetraonidae) v hřebenových partiích východních Sudet a jejich vztahu k imisím škodlivin transportovaných srážkovými vodami. Opera Corconica 19: 165-182.