Ptáci sekundárního bezlesí ve vojenských prostorech a bývalém hraničním pásmu na Šumavě

Birds in secondary grasslands of military training areas and a former border zone in the Šumava Mts.

Luděk Buřka 1 & Bohuslav Kloubec 2

1 Správa NP a CHKO Šumava, 341 92 Kašperské Hory
2 Správa CHKO Třeboňsko, Valy 121, 379 01 Třeboň

The results of a survey of breeding bird communities in the very specific conditions of military areas and a former border belt are presented in the paper. Attention was especially paid to the occurrence of birds in different succesive stages of vegetation in 28 forestless areas within the territory of the Šumava National Park and Protected Landscape Area. The areas are represented by secondary antropogenous grasslands, abandoned after the World War II, and now being in different stages of the secondary succession, usually with no management or specifically used for military purposes. In total, 97 bird species were registered in 28 localities. Basic quantitative characteristics as relative abundance, dominance and frequency were calculated for each species. Using statistical methods (cannonical correlations - the Canoco program), some differences in the composition of bird communities were found between particular localities and some indicative groups of species for particular habitats were appointed. The secondary forestless areas appear to be a very recent valuable component in a complex of different ecosystems within the Šumava region and they provide suitable habitats for rich bird communities and some endangered bird species.

Key words: breeding communities, line transect, abandoned grasslands, succession, Šumava Mts.

ÚVOD

Až do období středověku lze předpokládat, že avifauna Šumavy měla převážně lesní charakter. Postupem kolonizace území člověkem docházelo k rozsáhlým odlesněním, které mělo za následek jednak úbytek přirozených sta-

Fig.1. Map of the studied area. 1 - 28 - particular studied localities, capitals mean abbreviations of the names of four different areas: DV - area of Dobrá Voda, HP - border belt, HL - border area on the right side of the Lipno reservoir, B - area of Boletice.
novětší pro původní lesní druhy, jednak došlo k vytvoření většího mozaikovosti území a diverzifikaci jeho ekosystémů. První velký a historicky patrně nejzaznatnější zásah do původních pralesů proběhl v souvislosti se sklášskou kolonizací (cca od 9., ve větší míře od 2. połowy 16. století).

Složení původní lesní fauna dále silně ovlivnilo intenzivní lesnické obhospodařování (zejména vznik obrovských ploch smrkových lesů), jež mělo za následek celkovou boréralizaci avifauny. Bezlesé enklávy byly dále udržovány z důvodu vzniku trvalých sídel i zemědělství. Děletrající existenci antropogenního bezlesí došlo jednak ke ochucené populaci lesní avifauny, ale na druhou stranu ke zvýšení pestrosti krajiny a rozšíření nelesnich a synantropních druhů.

Dnesní stav sekundárního antropogenního bezlesí na Šumavě je velmi specifický a je výsledkem konkrétního historického vývoje v poválečném období, během něhož došlo k přerušení kontinuity osidlení a z velké části i obhospodařování nelesních enkláv v široké příhraniční oblasti.

Velký vliv na vývoj šumavské krajiny do druhé světové válce měla zejména existence hraničního pásma a dvou velkých vojenských prostorů. To všechno vedlo k výraznému omezení zemědělského využívání bezlesí oproti předcházejícím obdobím a jeho rozčlenění do mozaiky ploch o různém stupni sekundární sукcese, eventualně ploch specificky poznamenaných vojenskou výcvikovou aktivitou v minulosti i současnosti. Tyto spontánně renaturalizující plochy jsou dnes výjimečné z hlediska "normální" osidlené krajiny a zejména vyjímkou při srovnání s bavorskou stranou Šumavy. Vyznačují se často voskou druhovou pestrostí hnízdních společenstvů ptáků, mnohé plochy jsou významnými refugia vzácných či ohrožených druhů. Bezlesí na Šumavě jako velmi důležitému souboru stanovišť z hlediska ochrany biodiverzity začali věnovat více pozorností v poslední době zejména geobotanici v souvislosti se vznikem národního parku a dalšího využití těchto ploch (např. PRACH et al. 1996).

Tato studie si klade za cíl především provést základní faunistickou inventarizaci ptáků v uvedených biotopoch, podat základní charakteristiku struktury hnízdních společenstev ptáků, vymezit indikátorí druhy pro určitý biotopické kategorie bezlesí a poskytnout jeden z podkladů pro diskuse i rozhodování o optimálním managementu bezlesých enkláv v Národním parku a Chráněné krajinné oblasti Šumava.

MATERIÁL A METODIKA

Průzkum byl prováděn na 28 lokalitách (liniích) v západní, střední i jižním části Šumavy (obr. 1). Byly podchyceny hlavní nelesní enklávy bývalého vojenského prostoru Dobrá Voda (8 linek celkové délce 14650 m), stávajícího vojenského prostoru Boletice (6 linek o celkové délce 27925 m) a bývalého hraničního pásma (14 linek o celkové délce 29400 m).

Prakticky všechny sledované nelesní enklávy jsou tvorené mozaikou různých stanovišť a ekotonů. Na zkoumaném území bylo vymezeno 13 základních typů biotopů, které představují částečně i různá sukcesní stadia vegetace (tab. 1). Jejich relativní zastoupení na každé linii bylo vyjádřeno v procentech (viz tab. 2.).

Vzhledem ke všemělo plošnému rozsahu zkoumaného území byla pro výzkum avifauny použita metoda liniového transektu (JÄRVINEN & VALJANEN 1976). Na přesné stanovených trasách byli registrováni všichni vizuálně a akusticky zjištění ptáci. Záznamy byly prováděny pro celý roční období (hlavně a vedlejší pás dohromady, tedy bez omezení šíře pásu). Trasy byly voleny tak, aby reprezentativně procházely
Tab. 1. Základní typy sledovaných biotopů.
Table 1. List of investigated habitat types.

<table>
<thead>
<tr>
<th>mokřadní biotopy</th>
<th>wetland habitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>krátkostěbné ostručové porosty</td>
<td>short-tailed sedge meadows</td>
</tr>
<tr>
<td>vysokobylinné porosty</td>
<td>tall-herb wet vegetation</td>
</tr>
<tr>
<td>sukcesní vegetace s keři</td>
<td>successive vegetation with shrubs</td>
</tr>
<tr>
<td>sukcesní vegetace s keři a strmy</td>
<td>successive vegetation with shrubs and trees</td>
</tr>
<tr>
<td>rašeliniště</td>
<td>rašeliniště</td>
</tr>
<tr>
<td>pobřežní křoviny a vodní toky</td>
<td>riparian vegetation</td>
</tr>
<tr>
<td>vodní nádrže, stojatá voda</td>
<td>water reservoirs</td>
</tr>
</tbody>
</table>

mezklé a subxerofytní biotopy	mezophyloids and xeric habitats
obnažené půdy a plochy bez vegetace	uncovered soils, almost no vegetation
krátkostěbné subxerofytní porosty	short-tailed xeric vegetation
krátkostěbné štířená vlhčí porosty	short-tailed mezophyloids vegetation
vysokobylinné porosty	tall-herb vegetation
sukcesní vegetace s keři	successive vegetation with shrubs
sukcesní vegetace s keři i strmy, s remízký či alejemi	successive vegetation with shrubs and trees

Table 2. Characteristics of localities under study. For abbreviations of habitat types see Table 1, L - length of transects, A - mean altitude.

<table>
<thead>
<tr>
<th>locality</th>
<th>zastoupení typů biotopů (%)</th>
<th>L (m)</th>
<th>A (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Starý Brunst</td>
<td>26 56 14 2 2 0 0 0 0 0 0 0 0 0 0</td>
<td>1000 915</td>
<td>1010 1000</td>
<td>1000 915</td>
<td>1000 915</td>
<td></td>
<td>1000 915</td>
</tr>
</tbody>
</table>
vybraným územím a byly co nejméně ovlivněny okolními lesními biotopy. Zároveň byla většina tras rozdělena na úseky podle různého povrchu zastoupení vylíšených biotopů a s ohledem na minimální délku 1000m. Jednotlivé trasy, resp. jejich úseky byly poté hodnoceny jako samostatné lokality a byly sčítány zvlášť. Délka jednotlivých linii byla 1000 až 7300 m, průměrně 2571 m. Při sčítání byla rozlišována a zvlášť zaznamenávána pozorování páru, zvíjajícího se samce, samice, pozorování druhu bez určení pohlaví, rodiny s mláděty. Při hodnocení početnosti jednotlivých druhů byly registrace jedinců upravovány na počet párů. Jako jeden pár bylo interpretováno pozorování zvíjícího se nebo viděného samce, páru, rodiny s mláděty, nález obsazeného hnízda a dospělého jince bez určení pohlaví. Takto upravené hodnoty byly použity pro výpočet relativní početnosti vztažené na jednotku délky trasy. Pro tento výpočet maximálního počtu párů / 1000 m linie (A) byly použity výsledky kontroly s nejvýším zaznamenaným počtem párů pro daný druh a linii.

Při vyhodnocování získaných údajů o ptáčích společenstvích bylo použito několik větších ecologických charakteristik: početnost (A), dominance (D), konstanc (K), Shannon-Weaverův index diverzity (H'), vyrovnanost (E). Podobnost sledovaných ornitocenóz byla vyhodnocena pomocí Sørensenova (QS) a Renkoneova (Re) indexu (JANDA & ŘEPA 1986, LOSOS et al. 1985). Pro zhodnocení vztahů jednotlivých ptáčích druhů k vytipovaným charakteristikám prostředí bylo použito přímé gradientové analýzy (RDA - Redundancy Analysis, program CANOCO (LEPŠ 1996).

VÝSLEDKY A DISKUSE

Složení ornitocenóz

Na sledovaných lokalitách sekundárního bezlesí byl během doby průzkumu zjištěn výskyt celkem 97 druhů ptáků (tab. 3). Z tohoto počtu je možné u 70 (72,2 %) druhů hovořit o hnízdním typu výskytu na daných biotopech, u zbývajících 27 (27,8 %) se jedná buď o druhy, které v oblasti hnízdí, avšak jako hnízdní lokality využívají jižní stanoviště a na bezlesí se objevují ze dvořad potravinách či odpočinku anebo jsou to druhy vzácné, na daných lokalitách pravděpodobně nehnízdící, vyskytující se zde na tahu apod. Celková průměrná početnost činí 37,17 páru / 1000 m sledované linie. Hodnota indexu druhové diverzity je poměrně vysoká (H' = 3,686), hodnota ekvitability je E = 0,806.

Mezi eukomunitní (dominance nad 10 %) druhy patří pouze jeden druh, bramborníček hnízdící (Saxicola rubetra) - 13,18 %. V průměru připadá 4,90 páru na 1000 m linií sledovaných lokalit. Jako dominanti druhu (5 % < D < 10 %) bylo zjištěno 6 druhů: cvrčila zelená (Locustella naevia) - 7,8 %, budníček větší (Phylloscopus trochilus) - 7,2 %, linduška lesní (Anthus trivialis) - 6,7 %, skřívan polní (Alauda arvensis) - 5,8 %, strnad obecný (Emberiza citrinella), pěnkava obecná (Fringilla coelebs) - 5,4 %.

Dále bylo zjištěno 5 druhů subdominantních (D: 2-5), 10 druhů recedentních (D: 1-2), a 75 druhů subrecedentních (D: 0-1).
Z hladiska frekvence výskytu jednotlivých druhů je jako eukonstantní možné označit druhy s hodnotami konstancy 75 až 100 %. Mezi takové patří 9 druhů, z nichž tři se vyskytovaly ve všech vzorcích (na všechn sčítaných lokalitách): linduška lesní (Anthis trivialis), bramboriček hnedý (Saxicola rubetra) a cvrčíka zelená (Locustella naevia). Zbylými eukonstantními druhy jsou štěně obecné (Emberiza citrinella) - 93 %, pěnice slavíková (Sylvia borin) - 89,7 %, budníček větší (Phylloscopus trochilus) - 86,2 %, linduška luční (Anthis pratensis) - 82,7 %, pěnice hnedokřídlá (Sylvia communis) - 79,3 %, tuhýk obecný (Lanius collurio) - 79,3 %. Tyto druhy tvoří jádro hnízdního společenstva ptáků sekundárního bezlesí. Jako konstantní (50% < K < 75%) bylo zjištěno následujících 11 druhů: pěnkava obecná (Fringilla coelebs) - 72,4 %, skřivan polní (Alauda arvensis) - 69,0 %, pěnice černohlavá (Sylvia atricapilla) - 65,5 %, býl rudý (Carpodacus erythrinus) - 62,1 %, kos černý (Turdus merula) - 62,1 %, čechoříka zimní (Carduelis flammea) - 55,2 %, červenka obecná (Erithacus rubecula) - 55,2 %, sýkora kořadra (Parus major) - 55,2 %, kruňka obecný (Jynx torquilla) - 51,7 % a kukačka obecná (Cuculus canorus) - 51,7 %. Jako konstantní byl zaznamenán též výskyt holuba hřívačce (Columba palumbus) - 51,7 %, zde se jedná o výskyt převážně potraviní. Všechny druhy kategorií eukonstantní a konstantní je možno označit jako velmi typické pro zkoumaný komplex sekundárního bezlesí na Šumavě a jako synekologicky významné pro tato stanoviště.

Akcesorických druhů (konstancy: 25-50 %) bylo zjištěno 20. Zbyvajících 57 druhů s konstancí menší než 25 % patří mezi akcidentální druhy.

Přesto, že byl sledován jen určitý specifický typ bezlesí, zjištěnou strukturu ornitocenóz je možné srovnávat s výsledky, které uvádí např. JANDA (1989). Ten uvádí pro louky a horské pastviny z některých lokalit střední a jihovýchodní Šumavy výskyt 51 druhů, z čehož nejčetnější byly bramboriček hnedý (Saxicola rubetra), dále linduška luční (Anthis pratensis), pěnkava obecná (Fringilla coelebs), skřivan polní (Alauda arvensis), cvrčíka zelená (Locustella naevia) a strnad obecný (Emberiza citrinella). Hodnota indexu diversity (H' = 3,31) zde byla o něco nižší, než která byla zjištěna v této praxi. Dominantní postavení bramborička hnedého (Saxicola rubetra) v ornitocenózách bezlesí na Šumavě potvrzují i udaje získané během hnízdního mapování v 70. a 80. letech (ŠTASTNÝ et al. 1987, PYKAL et al. 1990, BÜRGER 1990). Stejně autoři uvádějí jeho úbytek v nižších nadmořských výškách ve vnitrozemí. Za pozornost stojí také zjištěný hnízdní výskyt některých méně početných druhů, jako například skřivana lesního (Lullula arborea), který byl během doby výzkumu zjišťován pouze v oblasti Boletice. Nejvyšší početnost byla zaznamenána na lokalitě Brzotice (1,04 párů / 1000 m). PYKAL et al. 1990 uvádí počet jeho početnosti na tradičních lokalitách, tj. především na Šumavě, mezi 70. a 80. léty. Krůtlav obecný (Jynx torquilla) byl zjišťován s poměrně vysokou frekvencí, často v místech bývalých osad se zbytky starých ovocných i jiných stromů. To odpovídá nárokům tohoto druhu na přítomnost stromových dutin. Výskyt bramborička černohlavého (Saxicola torquata) byl zaregistrován na 2 lokalitách, Stočilky (vojenský prostor Dobrů Voda) a Stražný. V obou případech se jednalo o jediné pozorování zpívajícího samece. Ze západočeské části Šumavy jej doposud uváděl pouze KUČERA (1972), a to vždy jenom z nižších poloh. Rákosník zpěvný (Acrcocephalus palustris) byl ponekud častější na lokalitách niže položených (Lípno, Boletice), avšak byl zjištěn výjimečně i na lokalitě Zhůří, v nadmořské výšce cca 900 m, která odpovídá udávanému výškovému
<table>
<thead>
<tr>
<th>Druh</th>
<th>Species</th>
<th>A</th>
<th>D</th>
<th>K</th>
<th>Druh</th>
<th>Species</th>
<th>A</th>
<th>D</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachybaptus ruficollis</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Saxicola rubra</td>
<td></td>
<td>4.90</td>
<td>13.18</td>
<td>100.00</td>
</tr>
<tr>
<td>Egretta alba</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Saxicola torquata</td>
<td></td>
<td>0.03</td>
<td>0.08</td>
<td>6.90</td>
</tr>
<tr>
<td>Ardea cinerea</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Oenanthe oenanthe</td>
<td></td>
<td>0.03</td>
<td>0.08</td>
<td>6.90</td>
</tr>
<tr>
<td>Ciconia nigra</td>
<td></td>
<td>0.04</td>
<td>0.11</td>
<td>10.34</td>
<td>Turdus torquatus</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
</tr>
<tr>
<td>Anas platyrhynchos</td>
<td></td>
<td>0.04</td>
<td>0.11</td>
<td>13.79</td>
<td>Turdus merula</td>
<td></td>
<td>0.62</td>
<td>1.67</td>
<td>62.07</td>
</tr>
<tr>
<td>Aythya fuligula</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Turdus pilaris</td>
<td></td>
<td>0.07</td>
<td>0.19</td>
<td>24.13</td>
</tr>
<tr>
<td>Haliaeetus albicilla</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Turdus philomelos</td>
<td></td>
<td>0.32</td>
<td>0.86</td>
<td>41.38</td>
</tr>
<tr>
<td>Penis apivorus</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Turdus viscivorus</td>
<td></td>
<td>0.20</td>
<td>0.54</td>
<td>41.38</td>
</tr>
<tr>
<td>Accipiter nisus</td>
<td></td>
<td>0.03</td>
<td>0.08</td>
<td>6.90</td>
<td>Locustella naevia</td>
<td></td>
<td>2.89</td>
<td>7.78</td>
<td>100.00</td>
</tr>
<tr>
<td>Buteo buteo</td>
<td></td>
<td>0.17</td>
<td>0.43</td>
<td>41.38</td>
<td>Locustella fluviatilis</td>
<td></td>
<td>0.09</td>
<td>0.24</td>
<td>10.34</td>
</tr>
<tr>
<td>Circus cyaneus</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Acrocephalus palustris</td>
<td></td>
<td>0.17</td>
<td>0.43</td>
<td>20.69</td>
</tr>
<tr>
<td>Circus aeruginosus</td>
<td></td>
<td>0.03</td>
<td>0.08</td>
<td>6.90</td>
<td>Hippolais icterina</td>
<td></td>
<td>0.10</td>
<td>0.27</td>
<td>17.24</td>
</tr>
<tr>
<td>Falco tinnunculus</td>
<td></td>
<td>0.14</td>
<td>0.38</td>
<td>31.03</td>
<td>Sylvia atricapilla</td>
<td></td>
<td>0.22</td>
<td>0.59</td>
<td>41.38</td>
</tr>
<tr>
<td>Tarax tetrix</td>
<td></td>
<td>0.45</td>
<td>1.21</td>
<td>37.93</td>
<td>Sylvia communis</td>
<td></td>
<td>1.30</td>
<td>3.50</td>
<td>79.31</td>
</tr>
<tr>
<td>Bonasa bonasia</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Sylvia borin</td>
<td></td>
<td>1.55</td>
<td>4.17</td>
<td>89.66</td>
</tr>
<tr>
<td>Coninx cinerinum</td>
<td></td>
<td>0.12</td>
<td>0.32</td>
<td>10.34</td>
<td>Sylvia atricapilla</td>
<td></td>
<td>0.97</td>
<td>2.61</td>
<td>65.52</td>
</tr>
<tr>
<td>Phasianus colchicus</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Phylloscopus collybita</td>
<td></td>
<td>0.59</td>
<td>1.59</td>
<td>48.28</td>
</tr>
<tr>
<td>Crex crex</td>
<td></td>
<td>0.42</td>
<td>1.13</td>
<td>37.93</td>
<td>Phylloscopus trochilus</td>
<td></td>
<td>2.69</td>
<td>7.24</td>
<td>86.21</td>
</tr>
<tr>
<td>Fulica atra</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Regulus regulus</td>
<td></td>
<td>0.14</td>
<td>0.38</td>
<td>34.48</td>
</tr>
<tr>
<td>Charadrius dubius</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Regulus ignicapillus</td>
<td></td>
<td>0.04</td>
<td>0.11</td>
<td>6.90</td>
</tr>
<tr>
<td>Numenius arquata</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Ficedula hypoleuca</td>
<td></td>
<td>0.03</td>
<td>0.08</td>
<td>3.45</td>
</tr>
<tr>
<td>Gallinago gallinago</td>
<td></td>
<td>0.36</td>
<td>0.97</td>
<td>48.28</td>
<td>Panurus peguensis</td>
<td></td>
<td>0.09</td>
<td>0.24</td>
<td>20.69</td>
</tr>
<tr>
<td>Larus ridibundus</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Panurus montanus</td>
<td></td>
<td>0.26</td>
<td>0.70</td>
<td>37.93</td>
</tr>
<tr>
<td>Columba palumbus</td>
<td></td>
<td>0.19</td>
<td>0.51</td>
<td>51.72</td>
<td>Panurus cristatus</td>
<td></td>
<td>0.04</td>
<td>0.11</td>
<td>10.34</td>
</tr>
<tr>
<td>Columba oenas</td>
<td></td>
<td>0.03</td>
<td>0.08</td>
<td>10.34</td>
<td>Panurus ater</td>
<td></td>
<td>0.17</td>
<td>0.43</td>
<td>20.69</td>
</tr>
<tr>
<td>Streptopelia turtur</td>
<td></td>
<td>0.07</td>
<td>0.19</td>
<td>13.79</td>
<td>Panurus corvulus</td>
<td></td>
<td>0.16</td>
<td>0.42</td>
<td>24.14</td>
</tr>
<tr>
<td>Cuculus canorus</td>
<td></td>
<td>0.39</td>
<td>1.05</td>
<td>51.72</td>
<td>Parus major</td>
<td></td>
<td>0.55</td>
<td>1.48</td>
<td>55.17</td>
</tr>
<tr>
<td>Apus apus</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>13.79</td>
<td>Lanius collurio</td>
<td></td>
<td>1.52</td>
<td>3.55</td>
<td>79.31</td>
</tr>
<tr>
<td>Sturnus vulgaris</td>
<td></td>
<td>0.13</td>
<td>0.35</td>
<td>27.59</td>
<td>Garrulus glandarius</td>
<td></td>
<td>0.14</td>
<td>0.38</td>
<td>34.48</td>
</tr>
<tr>
<td>Picus viridis</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Pica pica</td>
<td></td>
<td>0.07</td>
<td>0.19</td>
<td>17.24</td>
</tr>
<tr>
<td>Dryocopus martius</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>10.34</td>
<td>Corvus monedula</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
</tr>
<tr>
<td>Dendrocopos major</td>
<td></td>
<td>0.20</td>
<td>0.54</td>
<td>34.48</td>
<td>Corvus corone</td>
<td></td>
<td>0.16</td>
<td>0.42</td>
<td>41.38</td>
</tr>
<tr>
<td>Dendrocopos minor</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Corvus corax</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
</tr>
<tr>
<td>Lulhula arborea</td>
<td></td>
<td>0.16</td>
<td>0.42</td>
<td>10.34</td>
<td>Fringilla coelebs</td>
<td></td>
<td>1.99</td>
<td>5.35</td>
<td>72.41</td>
</tr>
<tr>
<td>Alauda arvensis</td>
<td></td>
<td>2.15</td>
<td>5.78</td>
<td>68.97</td>
<td>Serinus serinus</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
</tr>
<tr>
<td>Hirundo rustica</td>
<td></td>
<td>0.03</td>
<td>0.08</td>
<td>31.03</td>
<td>Carduelis chloris</td>
<td></td>
<td>0.14</td>
<td>0.38</td>
<td>24.14</td>
</tr>
<tr>
<td>Delichon urbica</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Carduelis carduelis</td>
<td></td>
<td>0.03</td>
<td>0.08</td>
<td>6.90</td>
</tr>
<tr>
<td>Anthus trivialis</td>
<td></td>
<td>2.50</td>
<td>6.73</td>
<td>100.00</td>
<td>Carduelis spinus</td>
<td></td>
<td>0.23</td>
<td>0.62</td>
<td>41.38</td>
</tr>
<tr>
<td>Anthus pratensis</td>
<td></td>
<td>1.56</td>
<td>4.20</td>
<td>82.76</td>
<td>Carduelis cannabina</td>
<td></td>
<td>0.04</td>
<td>0.11</td>
<td>6.90</td>
</tr>
<tr>
<td>Motacilla flava</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
<td>Carduelis flammea</td>
<td></td>
<td>0.45</td>
<td>1.21</td>
<td>55.17</td>
</tr>
<tr>
<td>Motacilla cinerea</td>
<td></td>
<td>0.19</td>
<td>0.51</td>
<td>37.93</td>
<td>Loxia curvirostris</td>
<td></td>
<td>0.04</td>
<td>0.11</td>
<td>20.69</td>
</tr>
<tr>
<td>Motacilla alba</td>
<td></td>
<td>0.07</td>
<td>0.19</td>
<td>17.24</td>
<td>Cardpodacus erythrinus</td>
<td></td>
<td>0.69</td>
<td>1.86</td>
<td>62.07</td>
</tr>
<tr>
<td>Circaetus cinclus</td>
<td></td>
<td>0.04</td>
<td>0.11</td>
<td>10.34</td>
<td>Pyrrhula pyrrhula</td>
<td></td>
<td>0.10</td>
<td>0.27</td>
<td>27.59</td>
</tr>
<tr>
<td>Troglodytes troglodytes</td>
<td></td>
<td>0.10</td>
<td>0.27</td>
<td>17.24</td>
<td>Coccoth. coccothraustes</td>
<td></td>
<td>0.13</td>
<td>0.35</td>
<td>20.69</td>
</tr>
<tr>
<td>Prunella modularis</td>
<td></td>
<td>0.58</td>
<td>1.56</td>
<td>48.28</td>
<td>Emberiza citrinella</td>
<td></td>
<td>1.99</td>
<td>5.35</td>
<td>93.10</td>
</tr>
<tr>
<td>Erithacus rubecula</td>
<td></td>
<td>0.41</td>
<td>1.10</td>
<td>55.17</td>
<td>Emberiza schoeniclus</td>
<td></td>
<td>0.06</td>
<td>0.16</td>
<td>3.45</td>
</tr>
<tr>
<td>Phoenicurus ochruros</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>6.90</td>
<td>Mullaria calandra</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>3.45</td>
</tr>
<tr>
<td>Phoen. phoenicurus</td>
<td></td>
<td>0.04</td>
<td>0.11</td>
<td>10.34</td>
<td></td>
<td></td>
<td>37.17</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Tab. 3. Přehled zjištěných druhů. A - relativní početnost (počet párů / 1000 m), D - dominance, K - konstancie.

Table 3. List of recorded species. A - relative abundance (number of pairs per 1000 m of line transect), D - dominance, K - constance.

Srovnání lokalit

Největší hodnoty indexu diverzity (více než 3,0) byly zjištěny na lokalitě Strážný (H' = 3,81), Otice, Brzotice (H' = 3,35), Květná (H' = 3,14). Naopak nejnížší druholová pestrost byla zjištěna na lokalitách Zadní Chalupy (H' = 1,99), Starý Brunst (H' = 2,22), Vysoké Lávy (H' = 2,44), Hadí vrch (H' = 2,52).

Tab. 4. Podobnost 4 steredovaných oblastí. DV - Dobrá Voda, HP - hraniční pásmo, HL - hranicní oblast na pravém břehu Lipna, B - Boletic, QS - Sørensenův index podobnosti druholového složení, Re - Renkonenův index podobnosti dominance.

<table>
<thead>
<tr>
<th>QS / Re</th>
<th>DV</th>
<th>HP</th>
<th>HL</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>58.70</td>
<td>66.97</td>
<td>65.63</td>
<td></td>
</tr>
<tr>
<td>DV</td>
<td>83.87</td>
<td>68.37</td>
<td>66.71</td>
<td></td>
</tr>
<tr>
<td>HP</td>
<td>71.79</td>
<td>71.55</td>
<td>73.71</td>
<td></td>
</tr>
<tr>
<td>HL</td>
<td>71.21</td>
<td>76.81</td>
<td>65.65</td>
<td></td>
</tr>
</tbody>
</table>

Největší celkové počty párů byly zaznamenány na lokalitě Otice (99.9 páru / 1000 m linie), Jablonce a Květná (87.7 páru / 1000 m). Výrazné nejnižší hodnoty (méně než 30 páru / 1000 m) jsou z lokalit Zadní Chalupy (23.6 páru / 1000 m), Světlé Hory (25.0 páru / 1000 m), Házlův Kříž (26.9 páru / 1000 m).

Podobnost druholového složení těchto 4 oblastí je ve všech případech dosti vysoká, hodnota Sørensenova indexu podobnosti (QS) se pohybuje v rozmezí hodnot 83,87 až 65,65 %. Oblasti 1 a 2 vykazují výraznou podobnost až identitu druholového složení (QS 80), ostatní spadají do kategorie silné podobnosti (QS = 60-80 %). Nejmenší vzájemná podobnost je mezi oblastí vojenského prostoru Boletic (B) a pravobřežím Lipna (HL). Podobnost dominance, výjimečně Renkonenovým indexem podobnosti (Re) je rovněž vysoká, (73,71 - 58,7), její rozložení mezi oblastmi je opačné než v případě QS; lokality s největší podob-
Vliv biotopů na složení ptačích společenstev, poznámky k některým druhům

Byly zjištěny statisticky průkazné rozdíly ve složení cenů ptáků v závislosti na poměrném zastoupení 13 základních kategorií bezlesí (Monte Carlo permutační test průkaznosti první ordinační osy; F = 4,52, P < 0,001). Jako nejvýznamnější z hlediska odlišnosti ornitocenóz byla zjištěna kategorie Mb - břehové porosty podél vodních toků, pobřežní kroviny (F = 5,07, P = 0,01), potom kategorie Sre - suché sukcesní plochy s rozptýlenou keřovou i stromovou vegetací (F = 2,63, P = 0,03). Jako velmi významné pro variabilitu společenstev ptáků na jednotlivých lokalitách je možno označit také kategorii So - plochy bez vegetace, obnažené půdy (F = 2,47, P = 0,05) a kategorii Mre - sukcesní plochy s rozptýlenou keřovou i stromovou vegetací na mokřinách stanovištích (F = 2,35, P = 0,05). Ostatní vytipované biotopy byly vyhodnoceny jako statisticky málo významné pro variabilitu získaného vzorku údajů. Proto bylo pro další analýzy zbytky 8 kategorií biotopů sloučeno do tří na základě terénních poznatků o jejich strukturní podobnosti a možného významu pro hnízdící ptáky. Sloučenými byly především biotopy Ss, Ms, Mc a Sv, Sm, Ss. Zvlášť byly ponechány kategorie Mra a Mv, které jsou dosti specifické a velmi málo zastoupené na zkoumaném území (celkem jen 3,1% - viz tab. 2). Takto upravené kategorie byly použity pro mnohorozměrnou analýzu a grafické znázornění vaze mezi jednotlivými druhy ptáků a biotopy pomocí programu Canoco (obr. 3). V grafu jsou znázorněny všechny eukonstantní a konstantní druhy, které tvoří základní složku cenoz ptáků na zkoumaných lokalitách šumavského bezlesí. Z grafu jsou patrné vazby druhů na některé biotopy. Nejtypičtějším druhem pro kategorii Mb je budníček větší (Phylloscopus trochilus),

Obr. 2. Závislost počtu druhů na délce linie (r = 0,585; P < 0,01, n = 28).

Fig. 2. Relationship between the number of species and the transect length (r = 0.585; P < 0.01, n = 28).

nosití druhového spektra se relativně nejvíce liší početným zastoupením jednotlivých druhů a naopak (tab.4).

Vliv délky linie a nadmořské výšky na složení ptačích společenstev

Počet druhů byl pozitivně ovlivněn délčí sčítací linie (obr. 2). Jeden z důvodů je patrně to, že délky sčítacích tras častečně respektují plošný rozsah lokalit, přičemž větší počty druhů typických pro bezlesí je možné předpokládat na nelesních enklávách větší plošné rozlohy. Závislost může být také zvýrazněna faktum, že nejdelší linie byly používány v oblasti Boletice, která je patrně primárně druhově bohatší. Např. i na lokalitě s relativně kratší sčítací trasou 2200 m (lok. Chlumany) v nadm. výšce 1033 m byla zaznamenána 25 druhů a velmi vysoká hodnota indexu diverzity (H' 3,05).

Nadmořská výška, která se na zkoumaných lokalitách pohybovala od 640 do 1033 m n.m., nehraje v daném případě prokazatelně žádnou významnou úlohu ve variabilitě ornitocenóz.
užší vztahy k tomuto biotopu jsou patrné i u několika dalších druhů, pěnici slavíkové (*Sylvia borin*), také pěnici černohlavé (*Sylvia atricapilla*), červenky obecné (*Eriphacus rubecula*), strnadu obecného (*Emberiza citrinella*). Pro stanošte typu Mre lze jako velmi typické označit pěnici hnědokřídlohu (*Sylvia communis*), pěnici slavíkovou (*Sylvia borin*), krutihlavu obecného (*Lanius collurio*), čeřetku zimní (*Carduelis flammea*), fuhýku obecného (*Lanius collurio*), hýla rudého (*Carpodacus erythrinus*), částečně i cvrčeku zelenou (*Locustella naevia*). Stanovště
typu SsMsMc a So preferují bramborníček hnědý (*Saxicola rubetra*), linduška luční (*Anthus pratensis*) a skřivan polní (*Alauda arvensis*). Bramborníček hnědý vykazuje silnou vazbu k biotopům typu suchých i vlhkých sukcesních ploch s členitým bylinným patrem a s roztroušenými keři a vlhkých nekosených ploch charakterizovaných nejčastěji rostlinnými společenstvy sv. *Calthion*. Preferenci vlhkých nekosených luk s přítomností vyšších bylin uvádějí např. PYKAL *et al.* 1990. Jeho hufční výskyt je popisován i z břehových porostů rybníků (MUSIL 1990). Žádný z konstantních a eukonstantních druhů se nevykoužuje přednostně na biotopech MraMv a SvSmSi. Typickým druhem pro biotop Sre je linduška lesní (*Anthus trivialis*), některé vše eurystopní druhy vykazují určitou
afinitu k biotopu Sre - pěnkava obecná (Fringilla coelebs), sykora koňadra (Passer major), kos černý (Turdus merula).

Obr. 4 vyjadřuje biotopické vazby několika vybraných méně početných druhů typických pro bezlesí vzájemném území. Graf potvrzuje vazbu skřivana lesního (Lullula arborea) na přítomnost suchých ploch bez vegetace. Tento druh byl zjišťovaný výhradně na lokalitách ve vojenském prostoru Boletice, a to na místech, kde neustále dochází k narušování půdního povrchu vojenskou technikou a kde se díky tomu nachází největší procento obnažených půd a ploch bez vegetace (lok. Brzotice - 5,5 %, lok. Ondřejov 2,0 %). Je zajímavé, že v oblasti vojenského prostoru Dobrá Voda, kde je možné najít místy podobná stanoviště, byl jeho výskyt zjištěn v současnosti jen ojediněle mimo roky sčítání (jaro 1994 - BUFKA nepubl., MATTAS (1991) jej ze západní Šumavy uvádí neuvádí. V některých oblastech šumavského podhůří je jeho výskyt v hnízdním období registrován v blízkosti podobných biotopů. V okolí Kašperských Hor jsou to např. mezerně zapojené kultury zemědělských plodin i zorána pole mezi mozaikou remízek a mezi s krivojími (BUFKA nepubl., KUČERA 1997). U chřástala polního (Crex crex) nezíry vyhledavá výraznější vazbu na některé z biotopů. Souběžně výskytu tetřívka obecného (Tetrao tetrix), biotopů So a SSMSMc je částečně dán tím, že veškerá pozorování jsou z ploch využívaných jako tokaniště. Je třeba tudíž tuto vazbu chápat úzce, ne jako vazbu na hnízdní biotop, ale jen jako preferenci pro tokaniště. Většina pozorování je z oblasti Boletice, kde jsou v současnosti relativně větší početnosti tohoto druhu v rámci celého Pošumaví. Obrazek dobře vyjadřuje výskyt cvečíky říční (Locustella fluviatilis) v břehových porostech a na mokrých stanovištích se sukcesi keřů a stromů. Umístění bekasiny otopní (Galinago gallinago) v grafu odpovídá výskytu na zamořených plochách (biotopy Ms, Mc).

Poděkování

Je naší milou povinností poděkovat za pomoc při vytipování základních kategorií biotopů na zkoumaném území RNDr. Ivě Bufově, za cenné a nezískatelné rady i vydatnou pomoc při počítacovém zpracování dat dále děkujeme RNDr. Janu Lepšovi, CSc. a Mgr. Petru Hornovi.

SUMMARY

In total, occurrence of 97 bird species was found out in the 28 studied localities. Total relative abundance is 37.17 pairs / 1000 m of a transect. The total species diversity was $H^' = 3.686$, equitability $E = 0.806$.

One species was found as eudominant, Saxicola rubetra (13.18%; average density 4.9 pairs / 1000 m). Six species were dominant: Locustella naevia, Phylloscopus trochilus, Anthus trivialis, Alauda arvensis, Emberiza citrinella, Fringilla coelebs, and five subdominant: Anthus pratensis, Sylvia borin, Lanius collurio, Sylvia communis and Sylvia atricapilla.

Taking into account the frequency of occurrence of particular species, it is possible to obtain the value of constance (K). Euconstant and constant species ($K = 75 - 100$) were Anthus trivialis, Saxicola rubetra, Locustella naevia (K for these three species is 100 %, which means that they were present in all localities), Emberiza citrinella, Sylvia borin, Phylloscopus trochilus, Anthus pratensis, Sylvia communis, Lanius collurio, Fringilla coelebs, Alauda arvensis, Sylvia atricapilla, Carduelis erythrinus, Turdus merula, Carduelis flammea, Erithacus rubecula, Passer major, Lynx...
torquilla, Cuculus canorus. These species seem to be very typical and synecologically significant for the studied secondary forestless areas in the Šumava Mts.

The highest values of species diversity index were found in localities Strážný (H' = 3.81), Otice, Brotice (H' = 3.36), Květná (H' = 3.14). The highest numbers of birds were recorded in the localities Otice (99.9 pairs / 1000 m), Jablonec and Květná (87.7 pairs / 1000m).

Twenty eight localities were classified in 4 different areas. The similarity of species composition (QS) and dominance (Re) in these areas, was very high. The number of species and the species diversity were positively correlated with the length of the particular transects. The probable reason is that it is possible to expect more species typical for grasslands on bigger forestless areas and the lengths of transects partially respect the area of the particular localities. This correlation can be encouraged also by the fact that the longest transects were used in the primarily species-rich area (Boletic).

Significant statistical differences were found in bird communities in respect to percentage of different basic categories of habitats. The most different were the categories of belt vegetation and bushes along water courses, dry succesive areas with dispersed bushes and trees and also areas without vegetation (more common especially in military areas). The correlations between some species and different biotops were transformed to the visual form by the Canoco programme.

The studied secondary forestless areas studied play a very important role for the diversity of bird fauna within the Šumava Mts. They are characterised by relatively rich bird breeding communities, and some species rare within the region (e.g. Lullula arborea, Ficedula hypoleuca, Miliaria calandra) or the whole Europe (e.g. Tetrao tetrix, Crex crex) occur here.

LITERATURA

